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ABSTRACT
The thermodynamic ice model of Thomdike (1992) is coupled to a one

dimensional, two layer ocean entrainment model to study the effect of mixed layer
dynamics on ice growth and the variation in the ocean heat flux into the ice due to
mixed layer entrainment. Mode! simulations show (i) the existence of a negative
feedback between the ice growth and the mixed layer entrainment; and (i) the
underlying ocean salinity has a greater effect on the ocean heat flux than does
variations in the underlying ocean temperature. Model simulations for a variety of
surface forcing and initial conditions demonstrate the need to include mixed layer

dynamics for realistic ice prediction in the Arctic.
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I. INTRODUCTION

A. BACKGROUND

The thermodynamic growth of sea ice is essentially a one-dimensional
heat conduction problem with the boundary conditions expressed in terms of
incident heat fluxes of shortwave and longwave radiation and sensible heat at
the surface and the upward, sensible heat flux from the ocean (Untersteiner,
1961). The heat budget is approximately one-dimensional because sea ice is
very thin in comparison to the large area it covers, and small changes in the
atmospheric or oceanic heat fluxes can cause major changes in sea ice
thickness and extent (Maykut, 1985). The surface temperature of the ice will
vary, according to Kirchoff's Law (Stewart, 1985), so the outgoing longwave
radiation nearly balances the incoming fluxes at the surface. When the surface
temperature of the ice is less than the freezing temperature of the ice a
temperature gradient is set up across the ice and heat heat will be conducted
upwards through the ice. If this conductive flux exceeds the oceanic heat flux
due o entrainment, latent heat will be released at the bottom of the ice in the

form of ice growth (Thomdike, 1992).



Early thermodynamic sea-ice models (Untersteiner, 1964; Maykut and
Untersteiner, 1971; Washington et al., 1976) used observed or calculated
atmospheric forcing with prescribed upward ocean heat flux into the ice. The
next development was coupled ice-ocean models to include ocean dynamics.
Parkinson and Washington (1979) used a mixed layer of fixed depth and a fixed
value for the upward oceanic heat flux. Hibler and Bryan (1987) coupled a
dynamic thermodynamic sea ice model to a multi-level baroclinic ocean model,
and Semtner (1987) coupled a dynamic thermodynamic sea ice model to a
multi-level primitive equation ocean circulation model. Both of these later
models calculated the upward oceanic heat flux by comparing the temperature
difference between the ice and the upper level of the ocean model. Although
full mixed layer dynamics are not used in these models to calculate the upward
oceanic heat flux, they do show the sensitivity of ice thickness and extent to the
ocean heat flux. It was not until Lemke (1987) coupled a thermodynamic sea
ice model with a one dimensional, ocean mixed layer model that the vertical
oceanic heat flux was determined using mixed layer physics. However, his
model empirically paramaterizes the mechanical mixing due to ice motion.
Mellor and Kantha (1989) aiso developed a coupled ice-ocean mixed layer
model utilizing second order closure to determine ocean eddy conductivity.

Claes (1990) showed the impact of mixed layer dynamics on the onset of
freezing and determined that, under certain conditions, the upward oceanic heat

flux could prevent ice formation regardless of the atmospheric forcing.




B. OBJECTIVE

The fluxes of momentum, mass, and heat into the ocean are controlled by
the oceanic surface mixed layer so proper understanding of mixed layer
dynamics is critical to understanding the physical oceanography of the arctic.

For this research a simplified, sea ice model (Thomdike, 1992) is coupled
with a tunable variation of the Kraus and Tumer (1967) one-dimensional mixed
layer model to investigate the effect of mixed layer dynamics on the thickness
of sea ice and the variation in the ocean heat flux into the ice. The tunable
mixing coefficients in the mixed layer model are determined by solving the
Naval Postgraduate School bulk turbulence closure model (Garwood, 1977).
The simplicity of the Kraus-Tumer model simplifies the investigation of the
thermodynamic and dynamic interactions of the ocean mixed layer and sea ice
under diverse conditions. Cases that need to be studied include ice response
to storms under varying initial temperature and salinity profiles, the seasonal
cycle of refreezing and melting, and longer-term climatic response to differing
initial thermodynamic conditions beneath the ice.

Chapter Il discusses processes involved in sea ice growth and ocean
mixed layer dynamics. In Chapter lll the sea ice model is developed and
coupled with the ocean mixed layer model. Chapter IV will give case studies
using varying initial conditions to demonstrate the sensitivity of the model to

different forcing and the interaction between dynamic and thermodynamic




processes. Chapter V summarizes the results of the research, and makes

conclusions and recommendations for further study.




i THEORY

A. FORMATION AND GROWTH OF SEA ICE

The presence of salt in seawater depresses both the freezing temperature
of the water and the temperature of maximum density, compared to fresh water.
Usually, the salinity of seawater is greater than 24.7 psu, so the freezing
temperature is higher than the temperature of maximum density. Hence, as the
surface of the ocean cools, the surface water density increases and convective
mixing results. This cooling will continue until the mixed layer is at the freezing
point (Weeks and Ackley, 1982). However, the underlying thermodynamic
structure of the ocean is a significant factor in determining the possible onset of
freezing (Claes, 1990).

When the mixed layer temperature has reached the freezing point any
additional heat loss causes the water to be supercooled, and ice begins to
form. The amount of supercooling required to cause ice formation is on the
order of only a few hundredths of a degree Celsius and leads to the production
of Frazil ice (Maykut, 1985). Depending on wind and wave action the continued
production of frazil ice results in "sheet ice,” grease ice, or pancake ice (Weeks
and Ackley, 1982).




Ilce formation from supercooling will continue until the ice forms a
continuous sheet that tends to insulate the seawater from the atmosphere. As
freezing continues, the temperature of the ice surface cools from near the
freezing point to a temperature that approaches the atmospheric temperature.
This results in a temperature gradient across the ice and a conductive heat flux
upward through the ice, removing latent heat from the ocean. Additional ice
growth occurring on the underside of the sheet (Maykut, 1985) is known as
congelation growth (Gow and Tucker, 1991). This new ice continues to develop
and may form different types of ice depending on environmental conditions.
These ice characteristics are important for understanding and predicting ice
growth, and ice may be classified by stage of development as shown in Table
2.1 (Naval Polar Oceanography Center, 1984).

The amount of salt initially trapped as brine in sea ice is a function of the
freezing rate of the sea water and its salinity. The makeup and distribution of
salt in the ice with time will be determined by the temperature of the ice and the
phase relationship between the ice, salt and brine (Gow and Tucker, 1991).
Figure 2.1 shows idealized vertical salinity profiles of sea ice.

Gow and Tucker (1991) summarized the important features of the salinity

profiles as follows:

* High salinities at the top and bottom of thinner ice sheets, leading to
strongly C-shaped salinity profiles.
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Figure 2.1 Idealized ice Salinity Profiles in Arctic Sea Ice for Various Ice
Thicknesses. Curves a - d Represent First Year Ice. The Remaining Curves
llustrate Profiles Found in Multiyear ice (Maykut, 1985)

* General weakening of the C-shaped salinity profile accompanied by
progressive decrease in bulk salinity with increasing thickness and age of
the ice sheet, indicative of downward migration of brine through the ice
and its ejection into the underlying ocean.

 Virtual desalinization of the upper levels of first year ice during and after
its transformation to mulliyear ice.




The shape of the profiles in Figure 2.1 can be explained by four
mechanisms that remove brine from sea ice: migration of brine pockets through
ice crystals, brine expulsion, brine drainage, and flushing (Untersteiner, 1968).
Brine drainage is probably the primary mechanism for the salinity changes in
first year ice (Maykut, 1985). Cox and Weeks (1974) gathered a wide variety of
data to show the dependence of average salinity upon ice thickness in the

arctic. Figure 2.2 shows that for cold (growing) ice there is a steep, linear
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Figure 2.2 Average Salinity of Sea Ice as a Function of Ice Thickness for Cold
Sea Ice Sampled During the Growth Season (Cox and Weeks, 1974).




decrease in the average salinity of the ice up to an ice thickness of about 40
cm, and then a sharp decrease in the slope of salinity change per ice thickness
change. The abrupt change in the slope is most likely caused by a shift in the
desalinization mechanism from brine expulsion to brine drainage (Gow and

Tucker, 1991). The high initial salinity of sea ice results from the high initial

TABLE 2.1 STAGES OF ICE DEVELOPMENT

STAGE OF DEVELOPMENT THICKNESS
New, Frazil, Slush, Shuga, Grease | 0 - 10 cm (0-4 in)
Dark Nilas 0-5cm (0-2in)

Light Nilas 5-10cm (24 in)
Gray 10-15cm (4-6 in)
Gray-White 15-30cm (6-12 in)
First Year Thin 30 - 70 cm (12-28 in)
First Year Medium 70 - 120 cm (28-47 in)
First Year Thick 120 -200 cm (47-80 in)
Second Year >2m (>80in)
Multiyear >2m (>80in)

growth rate of the ice that entraps large amounts of brine. As the ice thickens,
the growth rate of the ice slows and less brine is trapped. The effects of brine
drainage become evident and result in a decrease in the salinity of the ice

(Maykut,1985).




For simplicity in this research, the ice salinity will be assumed constant in
time, but the Cox and Weeks data can be used to express ice salinity as a

function of thickness.

B. MIXED LAYER DYNAMICS

The oceanic planetary boundary layer or mixed layer is the fully turbulent
region above the seasonal thermocline. Shear stress and upward buoyancy
fiux provide the mechanical energy to mix salinity, momentum and heat in the
mixed layer (Garwood, 1977). The shear stress is imparted by the wind to the
water and transmitted downwards. The buoyancy flux results from either
heating from below, cooling from above or downward surface salinity flux which
leads to instabilities in the mixed layer.

The mixed layer is generally considered to be vertically homogeneous in
temperature, salinity and density deépﬂe the presence of the fine scale
microstructure (Zilitinkevich et al., 1979). The quasi-homogeneous nature of
the mixed layer has led to it being described as a "slab." By assuming the
mixed layer is homogeneous the momentum and buoyancy fluxes only need to
be specified at the surface and calculated at the base of the mixed layer.
However, the small variations in the mean flow, temperature or salinity can lead
to large changes in the turbulent fluxes (Garwood, 1977). Zilitinkevich et al
(1979) show that the vertical heat flux from a 0.01° C temperature difference in

the upper 10 meters of the ocean is equivalent to the heat flux generated by a
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1°C difference between the sea surface and the atmosphere at a height of 10
meters. Figure 2.3 shows a temperature and salinity profile taken at an
AIDJEX camp (Bauer et al, 1980). The profiles clearly show the finescale
structure present in the mixed layer that is not shown in the typical temperature
and salinity profiles in Figure 2.4. Garwood (1977) showed that by using a
vertically integrated (bulk) model of the mixed layer the important effects of the
fine scale sfructure of the mixed layer can be accounted for by direct estimation
of averaged mixed layer turbulent Kinetic energy.

The Arctic ocean mixed layer has some unique characteristics due to its
ice cover. Here the shear stress between the ice and ocean provides the
mechanism to transfer momentum from the atmosphere to the ocean.
Typically, the ice-covered mixed leyer is at or near the freezing point so it
stores almost no sensible heat (McPhee, 1986). Because the density of water
near the freezing point is almost entirely a function of salinity, the buoyancy flux
is proportional to the salt flux alone (Morison and Smith, 1981).

The central Arctic is divided into Canadian and Eurasian basins by the
Lomonosov Ridge. Coachman and Aagaard (1974) defined the three water
masses in the central Arctic: Arctic water (0-200 m), Atlantic water (200-900 m)
and bottom water (900 m-bottom). The Arctic water can be further divided into
Arctic surface and Arctic subsurface layer waters. Figure 2.4 shows typical

temperature and salinity profiles for both basins of the arctic.
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AIDJEX from Ice Camp Caribou Showing the Finescale Structure That is
Typically Present in the Mixed Layer (Bauer et al, 1980).

The Arctic surface water extends from the surface to a 30 m-50 m depth

and has fairly uniform distributions of temperature and salinity across the Arctic.

The variations in salinity are mainly due to freshwater runoff from land and

inflow of Atlantic and Pacific Ocean waters, but this is along the periphery of

the basins. The temperature is at or near the freezing point throughout the

basins except for areas that are ice-free for exiended periods.
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The characteristics of the Arctic subsurface layers extend from the surface
waters to 200 m and vary between the two basins. In the Eurasian basin the
salinity increases with depth down to about 200 m where it reaches a value of

34.9 to 35.0 psu, and below there it is nearly isohaline. The temperature

remains isothermal
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down to about 100 m and then increases to above 0° C due to the presence of
the Atlantic water. In the Canadian basin, the halocline is similar to the
Eurasian basins except there is not as rapid an increase in salinity with depth.
The major Canadian basin difference is in the temperature profile due to the
presence of Bering sea water, which results in a temperature maximum of
approximately -1° C at 75 to 100 m depth. The temperature then decreases to
-1.5° C at about 150 m and remains nearly isothermal down to the Atlantic
water. The presence of the Bering sea water is critical in determining the
oceanic heat flux into the ice because it separates the surface layer from the
wamm (>0°C) Atlantic water, as shown by Morison and Smith (1981) from

observations on ice island T-3.

14




. MODEL DEVELOPMENT

A. THE ICE GROWTH MODEL

The physical and dynamical properties of sea ice have been studied for
many years but are still not completely understood. However, the most
important aspects of sea ice have been extensively investigated and
parameterizations and numerical models of varying degrees of sophistication
have been developed to explain the behavior of sea ice. For this model only
the most important physical processes will be included and will be treated in as
simplified a manner as possible. The simplifications are not ad hoc but are
based on the nature of the physical process involved and the extent it is
understood. This method may lead to minor quantitative differences compared
to more sophisticated models, but the goal here is to emphasize the role of
mixed layer dynamics in limiting sea-ice growth. Hence, complexity attributed to
other processes is minimized.

1. Longwave Radiation Fhuxes

The first step is to linearize the Stefan-Boltzman Law near the
freezing point to determine the upward radiant flux leaving the ice. Following

Thomndike (1992) the Stefan-Boltzman Law can be written as:

15




Fo=0 Tae=o(Tp Tod* (3.1)

where:
o =57 x 10° Wm?2K™* is the Stefan Boltzman constant
T=273 K is the freezing point of fresh water

T, is the surface temperature in °C
F., is the radient exitance in Wm?

Linearizing equation 3.1 leads to:

Fp=A+BT 3.2)

where
A = o(T)* = 320 Wm?
B = 40(T)* = 4.6 Wm2 K"
Using a surface temperature of -440°C with equation 3.1 gives a radiation
flux of 168 Wm? while equation 3.2 gives a radiation flux of 136 Wm? which is
a difference of 19%. The downward long wave radiation is paramaterized (

Maykut, 1986) as:

FureaTy (3.3)
where:
€ is the effective emissivity of the atmosphere
c is the Stefan Boltzman constant
T, is the air temperature at 2 m and will be specified to simulate various
atmospheric conditions
Maykut and Church (1973) developed an expression for ¢ based on

observations at Barrow, Alaska which is:

16




] €*=0.7855(1+0.2232C2)
where:

C is the fractional cloud cover

2. Senshile Heat flux

Sensible heat fiux in the atmospheric surface layer above the ice is
the resuit of turbulent heat conduction between the atmosphere and the ice
surface. Although the sensible heat flux is often ignored in climate studies of
the central Arctic, it can be very important on shorter time scales. Figure 3.1
shows the variations of the sensible heat flux with ice thickness and season. In
early March the sensible heat flux to the atmosphere exceeds 350 Wm? for 5
cm thick ice. The importance of the sensible heat flux decreases with
increasing thickness of ice, and the sensible heat flux for 0.8 m thick ice is

about 40 Wm™2. The sensible heat flux has been paramaterized by Maykut

(1986) as:
Fe=p4Cp,Cs {tho* ;10 (TarTed @4)
where
p, is the density of air

C,. is the specific heat of air
c, is the bulk transfer coefficient for sensible heat
: U,0,Vyo is the wind speed at 10m

17




T,. is the air temperature at 2m
T, is the temperature of the surface of the ice

Andreas (1987) has found the value for C; to vary between 1.0 x 10
3 and 1.5 x 10™, For this model the value of C, will be fixed at 1.25 x 10°. The
air temperature at 2 meters will be specified to simulate various atmospheric

conditions.

3. Conductive Heat Flux

After the summer melting season the surface of the ice begins to
cool while the bottom of the ice remains near the freezing point of the adjacent
seawater. When the ice surface becomes colder than the ice bottom an
upward conduction of heat results.

This conductive heat fiux is the amount of heat reaching the surface
and depends on the temperature gradient across the ice and the thermal
conductivity of the ice. Maykut and Untersteiner (1971) paramaterized the

conductive heat flux as:

F.=-kT (3.5)
¢ oz

Where:

F. is the conductive heat flux
K is the thermal conductivity of ice

% is the temperature gradient of the ice

18
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Thickness (m) (Maykut, 1986).

The thermal conductivity (K) of young ice can vary by as much as
50% (Maykut, 1986). However, following Thomdike (1992) K is considered to

be constant of 2 Wm™ K. The temperature profile of the ice will be considered

19




linear, which Maykut (1978) showed to be a good approximation for young ice

and allows equation 3.5 to be written:

chxﬂ (3.6)
H

where:
H is the thickness of the ice

T, is the temperature of the top of the ice
T, is the temperature of the bottom of the ice using equation 3.7

a. Freezing point of sea water
Neglecting pressure effects, the freezing point temperature of

sea water is given by equation (15) (Millero and Leung, 1976):

T8+ 88" + 88 60

where:
a, = -0.0575
a, = 1.710523 x 10°

a, = -2.154996 x 10*
s, is the salinity of the mixed layer

4. Ice Motion
The equation of motion for sea ice balances ice acceleration against
air and water stresses, coriolis force, intemal ice stress and the pressure

gradient force. Thorndike and Colony (1982) showed that over 70% of the

20




variance of the ice motion can be explained by the geostrophic wind and
developed a free drift model that neglected the internal ice stresses. Hibler and
Tucker (1979) show that in the short term the effects of the pressure gradient
force is small compared to the coriolis force and wind and water stresses and is
therefore neglected in this model. In any case, the geostrophic fiow may be
linearly separated from the force balance, and the equations for unsteady ice

motion become:

oy, PR Txgn Xy

= (3.8)
a ! o, H

+
fu, JYan Y (3.9)

where:

u, v, are the x and y components of ice velocity

f is the Coriolis Force

T om Tyam IS the stress imparted on the ice from the wind.
T, w Ty is the stress imparted on the ice from the ocean.
p, is the density of the ice.

H is the thickness of the ice.

a. Wind and Ocean stresses

The wind stress on the ice can be paramaterized as:

s =PaC (U0~ U (Who=UF+(Vo- VI (3.40)

21



Ty, =PaCo,(Vio~V(tho-U)2+(Vie-V)? (3.11)

While the ocean stress on the ice can be parameterized as:

T = P Co, U U U U P +HV- V) (3.12)
ty,=PwCn(VI- V..)\/(U,-U,)!*r(v,- v, (3.13)

where:

p, is the density of air

p, is the density of sea water

C,. is the ice surface drag coefficient

C,, is the ice bottom drag coefficient

U, V4 @re the x and y components of the wind speed at 10m

u, v, are the x and y components of the ice velocity

u,. v, are the x and y components of the ocean mixed layer velocity

Guest and Davidson (1991) measured the surface drag

coefficient ( C,,, ) of various ice types. For this model a constant value of 2.3 x
10 will be used for C,, which corresponds to Guest and Davidson's median
value for smooth young ice. McPhee (1990) emphasized the difficulty in
determining a bottom drag coefficient and the wide range of values of C,, that
have been obtained. However, this model uses a constant value of 5.4 x 10°

for the bottom drag coefficient following McPhee (1979).




5. Oceanic Heat Flux
The ocean heat flux is the result of warmer water being entrained
into the mixed layer due to turbulent mixing and is paramaterized by Chu and

Garwood (1988) as:

Fy=~Pw Gy Wy AT (3.14)

where:

F, is the ocean heat flux due to entrainment

p, is the density of sea water

w, is the entrainment rate

AT is the temperature difference between the ocean mixed layer and the
water below.
The entrainment rate w, is given in equation 3.28 and is determined by the one-

dimensional mixed layer model which is discussed in section B of Chapter IIl.
6. Ice Growth
The rate of ice growth or melting will be determined by the balance
of fluxes into and out of the ice. Latent heat is released at the bottom of the
ice by changing water into ice when the conductive heat flux upward into the ice
exceeds the ocean heat flux upward into the mixed layer. The ice will melt If
the ocean heat fiux is greater than the conductive heat flux (Thomdike, 1992).

The latent heat flux due to the change in ice thickness is given as:
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F=L9H
ot

Where:

F, is the latent heat flux due to change in ice thickness
L is the latent heat of fusion for ice
dH/dt is the rate of change in ice thickness

The latent heat of fusion is considered to be constant at 3 x 10°J m*®
The balance of heat fluxes is represented in Figure 3.2. Summing
the heat fluxes at the surface of the ice yields:

Fiw*Fe+Fy=Fy (3:19)

and summing the heat fluxes at the bottom of the ice yields:

L - F,-F, (3.16)
Using equations 3.2, 3.4 and 3.6 with equation 3.15 gives:

T-T,
FiwK (—'—nﬁl’l’a"p.cdlho“;m (T~ TY+A+BTy,  3:17)

Using equations 3.6 and 3.14 with equation 3.16 gives:
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aH (Tr- Toe)
L—=K
ar H

+ W, AT (3.18)

Solving equation 3.17 for the surface temperature yields:

r _FuvA+p8,, 04 Uio*VioTa . KT, (3.19)
o
B+p.c,,c.\/u.’o+w%+i,$ BH+ 6,04 tho*Vio H+K

Figure 3.2 The Heat Fluxes That Determine The Ice Growth and Temperature
( from Thomdike, 1992)
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Finally, solving equation 3.18 for ice growth gives:

dH TrTe) 1
o =/ H +-l:(p,cp'w, A7) (3.20)

B. OCEAN MIXED LAYER MODEL

The mixed layer model used here is a tunable, one dimensional Kraus and
Tumer (1967) type mixed layer model. The model assumptions following Niiler
and Kraus (1977) are:

1. The mean temperature, salinity and horizontal velocity are assumed to
be uniform within the mixed layer.

2. On the depth and time scales of the model, temperature, salinity and
horizontal velocity discontinuities can exist across the lower boundary of
the mixed layer.

3. Temperature changes associated with frictional dissipation are neglected.

4. Wind and ice stresses, turbulent kinetic energy and viscous dissipation
are considered to be horizontally uniform.

Additional assumptions are:

5. The temperature of the mixed layer remains at the freezing point, thus
not allowing storage of heat by the mixed layer and neglecting the effect

of supercooling at the water surface.
6. Loss of turbulence to internal waves is ignored.

7. Only the case of deepening mixed layer will be considered at the present
time.




1. Turbulent Kinetic Energy Equation
The model is derived from the turbulent kinetic energy (TKE)
equation, equation 3.21 (Garwood,1977):

1 a(?"‘?-b?), ’u,w@_T_lw/w/a_Tr]_T E’g__ Oyl U _tv_+w™ Uzﬂfiﬂv’; -

(3.21)
| ] (] v Vv

From Stull (1988):

Term | is the local storage tendency of TKE.

Term |l is the shear production of TKE due to vertical shear of the
horizontal mean flow.

* Term lli is the buoyant production or consumption of TKE depending on
whether the buoyancy flux is positive (upwards) or negative (downward).

e Term IV is turbulent transport of TKE by turbulent eddies and the pressure
transport of TKE due to pressure perturbations and can be positive or

negative.

 Term V is the viscous dissipation of TKE due to the conversion of TKE
into heat and will always be negative.

The TKE budget of the ocean can be assumed to be in steady state
because of the very short time scale for dissipation. This allows Term | of

equation 3.21 to be assumed equal to zero.
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2. Vertically integrated TKE Equation
Equation 3.21 is now vertically integrated over the depth of the mixed

layer and, following Claes (1990) , gives the bulk form of the TKE equation:

9 —_ — —_— — .
0-225 . [ogTW(0)- pgsW(O)] ug TW/(-1) -Bg s W/(-H]

where:

¢, is a constant of proportionality

u. is the water surface friction velocity

h is the depth of the mixed layer

a is the thermal expansion coefficient

p is the salinity contraction coefficient

g is gravity

T'w/(0)is the temperature flux at the top of the mixed layer
8'w/(0) is the salinity flux at the top of the mixed layer
T'w/(-h) is the temperature flux at the base of the mixed layer

8'w/(-1) is the salinity flux at the bottom of the mixed layer

Because the temperature of the mixed layer is kept at the freezing point, any

addition or loss of heat will go to melting or freezing ice. Hence the water

surface temperature flux agT'w'(0) is equal to zero.
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a. Ice stress and TKE transport
Term | in equation 3.22 represents the shear production minus
viscous dissipation integrated over the full depth of the mixed layer. The
constant ¢, is reduced exponentially on a vertical scale of u/f (Chu and

Garwood, 1988) and is approximately:
c| .29(-,N"l)

where:
f is the coriolis parameter
h is the depth of the mixed layer
u. is the water surface friction velocity.
¢, can be tuned to match observations. The friction velocity (u. ) is represented

by:

2,. 2R
t"l +t¥l

Pw

u, =

where:
T4, T, are the stresses imparted on the water from the ice .
P, is the density of the sea water.

The ice stresses 1, and 1, are equal but opposite in sign to the stress imparted

on the ice from the water, given in equations 3.12 and 3.13.

-

b. Buoyancy fluxes
The buoyancy flux at the surface of the mixed layer will be

determined by the salinity flux at the top of the mixed layer due to ice formation




or melting, while the buoyancy flux at the base of the mixed layer will be
determined by the heat and salinity fluxes due to entrainment of water from

below the mixed layer.

(1) Surface buoyancy flux. The 8'w'(0) term of equation 3.22

is the surface salinity flux that results from the freezing or melting of ice and is:
j —_— P; dH
! slw, 0 e—1{(§; - — (3.23)
1 @ = Her s

where:
p, is the density of the ice
p, is the density of the sea water
s, is the salinity of the mixed layer
s, is the salinity of the ice
dH/dt is the growth rate of the ice

Term Il of equation 3.22 is the surface buoyancy flux b’w/(0) and using

equation 3.23 can be written as:

bW/(0)- wfi (8-8) 2! (3.24)

(2) Buoyancy flux at the base of the mixed layer. The

T'w/(-H) and 8'w/(-h) terms of equation 3.22 are the heat and salinity fluxes

at the base of the mixed layer that result from the entrainment of water, with

different temperature and salinity, from below the mixed layer . Garwood
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(1977) develops the jump condition for the turbulent fluxes at the base of the
mixed layer by integrating across the entrainment zone and assuming a
negligible amount of heat stored in the entrainment zone. This allows the

temperature flux at the base of the mixed layer to be written as:
T'w/(-h)=-ATw, (3.25)
where:

AT‘ Tf‘ Tz

AT is the temperature jump between the mixed layer temperature and the
deep water temperature

T, is the mixed layer temperature which is at the freezing point
T, is the deep water temperature

and the salinity flux to be written as:

s'w/(-h)=-Asw, (3.26)

where:

As=8,-8
where :

As is the salinity jump between the mixed layer salinity and the deep water
salinity.
s, is the mixed layer salinity
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s, is the deep ocean salinity
w, is the entrainment velocity

Term Ill of equation 3.22 is the buoyancy flux b’w/(-h) at the base
of the mixed layer. Using equations 3.25 and 3.26 can be written as:

b'W/(-h)=agT'W'(-h) -Bgs'w’(-1) (2

with :
Ab=agAT-pgAs

Ab is the buoyancy jump between the mixed layer and the deep water

3. Entrainment Velocity
The entrainment velocity can be obtained from equation 3.22
combined with equations 3.24 and 3.27 and an added tuning constant ¢, , which

is a function of stability, to yield:

o‘-'n

+Gzﬂ9 (s. s)—-Abw (3.28)

Solving equation 3.28 for the entrainment velocity, W, gives:

e u.

-1 (3.29)

or
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1 GU L opglis,-sp 9| 29
R PG

Wo= agAT-BgAs

4. WMixed Layer Motion
The equations of motion for the mixed layer are determined by
integrating the mean momentum equation across the depth of the mixed layer

(Garwood, 1977), resulting in equations 3.30 and 3.31

au,, T UW
= fv i _Y¥e ., (3.30)
at o b Th G
ov,, v VW,
__=—f ! L v (3.31)
T P R

where:

u,, v, are the horizontal velocities of the mixed layer

f is the coriolis force

h is the depth of the mixed layer

p,, is the density of the mixed layer

w, is the entrainment rate

14, 1, are the stresses imparted on the mixed layer by the ice motion
c, is a linear damping constant.

The linear damping term (c, ) has been added to equations 3.30 and
3.31 to model the momentum dispersion effect (Pollard and Millard, 1970) and

can be tuned to match observations. Typically, ¢, = (2 days)™’ .
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5. Mbxed Layer Salinity
The salinity of the mixed layer will vary as a result of the salinity
fluxes given by equations 3.2 and 3.26. The salinity equation is determined by .
integrating the mean salinity equation across the depth of the mixed layer and

is given as:

o8, _

(3.32)
¥ h p,(s' si) ~WeAS




IV. MODEL RESULTS

A. MODEL INITIAL CONDITIONS

The closely coupled nature of ice growth with atmospheric and oceanic
forcings does not lend itself to a sensitivity study where only one parameter is
varied while all others are held constant. However, by varying initial conditions
and boundary conditions in the model, the sensitivity of the model to the various
parameters can be determined. The model boundary conditions are the air
temperature, wind speed, and cloudiness. The initial conditions are ice velocity,
mixed layer velocity, initial mixed layer salinity, the deep layer temperature, the
deep layer salinity and the initial mixed layer depth. Table 4.1 lists the case
solutions and the parameter that was varied. Output for all model cases is
shown in the appendix. The first case is the standard against which the effect
of the variations will be considered and is based on the temperature and
salinity profiles shown in Figure 2.1.  For all runs the initial velocity of the ice
and mixed layer are kept constant as is the cloudiness. One of the major goals
of this research is to study the variation in the oceanic heat flux and its effect

on the growth rate of ice.
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1. VARYING WIND SPEED

Calm winds were not considered in this study, although this may be
an important situation. When the winds calm, the mixed layer will shallow,
entrainment will cease, and there will be no ocean heat flux into the ice.

The standard case wind speed is chosen to be approximately 7ms™
while in case 2 the wind speed is doubled to 14ms™ . The increased wind
speed has two effects on the ice growth rate. First, the sensible heat flux is
increased which decreases the surface temperature of the ice. Second, as can
be seen from equation 3.29, the mechanical mixing (u.) term will increase eight-
fold when the wind speed (and u.) is increased by a factor of two. This leads to
a large entrainment rate (w, ) and a heat flux that exceeds the conductive heat

flux (F.) in less than four days and begins to melt the ice.

2. VARYING AIR TEMPERATURE
When the air temperature is increased from -30.0° C to -10.0° C, the

incoming net longwave radiation is increased to 220 Wm?. This increased heat
into the ice increases the surface temperature of the ice to the point that the
sensible heat flux becomes positive which also leads to a warmer surface
temperature. The warmer surface temperature decreases the conductive heat
flux and slows the growth rate of the ice. The slower ice growth has two effects
on the ocean heat flux. First, the surface buoyancy flux is decreased which
slows the entrainment rate (w, ) and second, there is less salt being ejected into

the mixed layer. Since the freezing temperature is determined by the mixed
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layer salinity, the temperature jump (AT) is also decreased. This results in a
lower ocean heat flux, however, the ocean heat flux is actually a larger

percentage of the conductive heat flux in this case.

3. VARYING THE ICE THICKNESS

Decreasing the initial ice thickness (H) to 0.05 m causes the surface
temperature to increase but still results in almost doubling the conductive heat
flux (F.). This large conductive heat flux rapidly decreases as the ice
thickens because the temperature gradient across the ice changes much more
slowly than does the change in ice thickness. The rapid ice growth causes an
increase in the entrainment rate and the ocean heat flux. The increase in
entrainment rate manifests itself in the increased depth of the mixed layer (h).

Increasing the initial ice thickness (H) to 2m allows the surface
temperature to decrease but results in aimost a 50% decrease in the
conductive heat flux and a slowing in the ice growth rate. This slower ice
growth rate results in a slower change in the buoyancy jump (Ab) between the
mixed layer and the deep layer because the mixed layer is now fresher than in

the standard case.

4. VARYING THE MIXED LAYER DEPTH
Decreasing the initial mixed layer depth (h) sharply increases the

entrainment rate for two reasons. First, the mechanical mixing is inversely

proportional to the mixed layer depth (h) times Ab. Second, the surface




buoyancy flux is increased due to the rapid increase in mixed layer salinity
which is also inversely proportional to the mixed layer depth as shown in
equation 3.32. Increasing the initial mixed layer depth to 45m likewise
decreases the ocean heat flux as the entrainment rate (w,) becomes

proportionally smaller to the entrainment rate in the standard case.

5. VARYING THE DEEP LAYER SALINITY
Increasing the deep layer salinity (s, ) to 31.25 psu reduces the
entrainment velocity (w, ) because the deep water is now denser and requires
more work to lift it into the mixed layer. The salinity jump As does decrease at
a more rapid rate due to the increased ice growth, but it is not enough to offset
the larger initial As.

Decreasing the deep layer salinity to 30.35 psu results in a large
increase in the entrainment rate (w, ) because of the decreased buoyancy jump
(Ab). The decrease in the ice growth and consequent decrease in the surface
buoyancy fiux is very small compared to the increased entrainment rate.

6. VARYING THE DEEP LAYER TEMPERATURE

increasing the deep layer temperature (T,) to -1.2°C increases the

ocean heat flux by increasing the temperature jump (AT). However, this

produces only a slight change in the entrainment velocity because the thermal




expansion coefficient (a) is so much smaller than the salinity contraction
coefficient (B).
The effect of decreasing T, so that the ocean is essentially

isothermal is not shown here, but would result in a vanishing ocean heat flux.

7. VARYING THE MIXED LAYER SALINITY.

Increasing the initial mixed layer salinity (s, ) to 30.35 psu not only
decreases the salinity jump (As) but it also increases the temperature jump (AT)
which leads to larger entrainment rates (w, ) and consequently a larger ocean
heat flux (F,). A decrease in salinity leads to a similar but opposite result,

although this is not shown here.
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TABLE 4.1 STANDARD RUN VALUES AND VARIED PARAMETER VALUES

PARAMETER VARIED

PARAMETER VALUE

Run 1 Standard Case T,=-30.0°C u,=5.0ms’
V= 5.0 ms™
s, = 29.9 psu s,= 30.8 psu
T,=-1.4°C
H=10m h=300m
Run2 | Wind Speed U= 10.0 ms* v, = 10.0 ms™
Run 3 Air Temperature T,=-10.0°C
Run 4 ice Thickness H=05m
Run § ice Thickness H=20m
Run 6 Mixed Layer Depth h=150m
Run 7 Mixed Layer Depth h=450m
Run 8 Salinity Jump, As s, = 31.25 psu
Run 9 Salinity Jump, As s, = 30.35 psu
Run 10 | Temperature Jump, T,=-1.2°C
AT
Run 11 | Salinity Jump, As
Temperature Jump, s, = 30.35 psu
AT

40




V. CONCLUSIONS

A. SUMMARY

This study has investigated the effects of mixed layer dynamics on the
growth of sea ice using a coupled ice-mixed layer model. The ice is modeled
as undeformed ice with a linear temperature profile and constant conductivity.
The ocean is modeled as a one dimensional, two layer system. Important
prognostic variables include ice thickness, mixed layer salinity, and mixed layer
depth. As long as ice is present, the mixed layer temperature is held at the
freezing point, which is dependent upon the mixed layer salinity. The surface
temperature of the ice varies in response to the net surface heat fluxes.

Model solutions revealed the response of the model {o initial conditions,
varying one parameter at a ime. These parameters included wind stress, air
temperature, mixed layer depth, ice thickness, and temperature and salinity
jumps between the mixed Iayér and deep layer. The model simulations
showed:

* There is a negative feed back between the ice growth rate and the mixed
layer entrainment rate.
* Increasing wind stress leads to a rapid increase in the entrainment rate

into the mixed layer and an upward ocean flux that exceeds the
conductive heat flux.
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The mixed layer entrainment rate is strongly influenced by the ice growth
rate through its effects on the surface buoyancy flux, mixed layer
temperature and salinity and subsequent effect on the buoyancy jump Ab.

Varying the deep layer salinity has a greater effect on the ocean heat flux
than does varying the deep layer temperature.

Increasing the mixed layer salinity leads to a large increase in the ocean
heat flux through the combined effects of increasing the temperature jump

AT and decreasing the buoyancy jump Ab.

Increasing the mixed layer depth decreases the entrainment rate by
decreasing the effects of wind stress and decreasing the surface
buoyancy flux. Decreasing the mixed layer depth increases the
entrainment rate for the same reasons.

The large range of heat fluxes precludes modelling the heat flux as a
constant or using more simplified physics to determine the ocean heat
flux.

RECOMMENDATIONS

The model shows the importance of mixed layer dynamics on ice growth

during the freezing cycle and under active mixed layer deepening. This

research has highlighted several areas of improvement and areas of further

study:

* Incorporating the three dimensional Naval Postgraduate School mixed

layer model (Adamec et al., 1981) with the ice growth model to allow for
deepening and shallowing of the mixed layer and advection.

* The effect of storms and varying wind stresses on the ocean heat flux.

« Determination of the equilibrium thickness of sea ice through an entire

year.
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Run 1:

y, =0.1 ms”

s, = 9.0 psu

v, =0.1 ms’

u, = 3.0x10° ms™
v, =3.0x10° ms™
s, = 29.9 psu
H=10m
h=30.0m

APPENDIX MODEL RUN RESULTS

INITIAL CONDITIONS :

U, = 5.0 ms™
Vi = 5.0 ms™
T, =-30.0°C
T,=-14°C
s, = 30.8 psu

LI

INGOMING LONCUAVE RADIATION

i

Wosmang

19

1" i

Ll il L.t i L) 1l a1

1 0 1 “°
deys

OUTGOING LONGUAVE RADIATION

"E \
m F

) 4 . X
v H 0

wsmn g
Ty

m F

wm F

E
E
i F

RS STENEANTNINTENE SN

LA

1

s E

1" » o

" 43 o




W imm =g

wime wg

wWermne ~g

$4

48

2

1 1]

-1

-4

-1

.4

1.5

COMBUCTIVE NEAT FLUX

OCEAN NEAT FL¥X

\\ ;
‘*--\‘~""\-~_--~‘ “..-‘--..-.~ -
“--.___._>2-“.-.- ]
F---.__._~_.--.d 5
i " [ 1) 44 L1}
Bays
SERBISLE WEAT FLUX
,———*"———-_—_—‘ :
// :
4¢””——‘
11 20 " L1} L1}
beys

1

Deys




ENTRAINUERT VELOGITY

TITY

Triy

Lill

s lasaaliioy

Adil

L Y 1
e

*> ¥ s e

s.42

k1)

"

"

TEMPERATURE SIPPERERCE (T1-72)

LA RARLY RAAAN RALA

Adadiaaan diaaalasay

LAil

-8.23

-8.20
-0.29
-h.243

LW N NN ]

-0

-9.283

L1

SALINIYY DIPPERENGE (81-82)

B

LAAE RRRI LARANE BRI

il

Lol NN TN Lill

-0,4

- - - -

- . - .

- - - -
L X ]

L1

0

"

45




SURIACE TEMPERATORE

-20.4
-2,

sse o0

-2

L] ]

1CE TRICKRESS

BARARRAAN LARAI LAAI

T LANAJ

aasalanaaliaiglainy

U SN

+.8

1.3
1.4
1

S ooy

1.9

“»

n

BIXED LAYER DEPTH

S 483 v

“°

46




Run 2:

y =0.1ms"
s, =9.0 psu
v, =0.1 ms’
u, = 3.0x10° ms™

INITIAL CONDITIONS :

U,e = 10.0 ms™
Vs = 10.0 ms™
T, =-30.0°C
T,=-14°C

v, =3.0x10° ms™ s, = 30.8 psu
s, = 29.9 psu
H=10m
h=30.0m
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Run 3:

y =01ms*

s, = 9.0 psu

v, =0.1ms"

u, = 3.0x10° ms"
v, = 3.0x10° ms™
s, = 29.9 psu
H=10m
h=30.0m

INITIAL CONDITIONS :

Uy, = 5.0 ms™
Vio = 5.0 ms™
T, =-10.0°C
T,=-14°C
s, = 30.8 psu
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Run 4:

u =0.1ms"

s, = 0.0 psu

v, =0.1ms’

u, = 3.0x10° ms™

v, = 3.0x10° ms™

s, = 29.9 psu
H=05mh=30.0m

INITIAL CONDITIONS :

U, = 5.0 ms"
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T, =-300°C
T,=-14°C
s, = 30.8 psu
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Run 5:

INITIAL CONDITIONS :

y =0.1ms’ U, =5.0 ms'_'1
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= L S
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Run 6:

INITIAL CONDITIONS :

u =0.1ms’ U, = 5.0 ms*
5 = 9001 psu_ Vio = 5.0 l;lf"
= =.
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Run 7:

INITIAL CONDITIONS :
o tp
=0, = .
v =01 ms" = 3000 C
u, = 3.0x10° ms™ T,=-14°C
v, = 360;104 ms™ s, = 31.5 psu
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Run 8:

INITIAL CONDITIONS :

y =01ms" Uy = 5.0 ms™
s, = 9.0 psu Vyo = 5.0 ms™
v, =0.1 ms’ T, =-300°C
u, = 3.0x10° ms™ T,=-14°C
v, = 3.0x10° ms” s, = 31.25 psu
s, = 29.9 psu
H=10m
h=30.0m
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Run 9:

INITIAL CONDITIONS :

u =0.1ms’ U, = 5.0 ms™

5 = 90(: psu_ ;,o =50 l(r;f"

:’L = 3.0x10° ms” T, - 13.?53 cc
v, = ;36()310a ms™* s, = 30.35 psu
s, = 29.9 psu

H=10m

h=300m
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Run 10:

INITIAL CO N
u =0.1ms’ Uy, = 5.0 ms™
s, = 9.0 psu Vo = 5.0 ms”
v, =01 ms’ T, =-300°C
u, = 3.0x10° ms’ T,=-12°C
v, = 3.0x10° ms s, = 30.8 psu
s, = 29.9 psu
H=10m
h=30.0m
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Run 11:

y =0.1ms"

s, = 9.0 psu

v, =0.1 ms"

u, = 3.0x10° ms”
v, = 3.0x10° ms*
s, = 30.35 psu
H=10m
h=30.0m

INITIAL CONDITIONS :

Uy = 5.0 ms™
Vi = 5.0 ms™
T, =-30.0°C
T,=-14°C
s, = 30.8 psu
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